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Abstract. The conventional coupled-channel method for many-particle scattering is modified to
facilitate applications to low-energy collision processes and to break-up (ionization) reactions.
A new approach to the construction of coupled-channel equations is developed in terms of
the weighted projections, where proper choices of the weighting function can simplify the
set of coupled equations. Optimal choices of the weighting functions are discussed, and
several approximations for construction of the weight functions are presented. The conventional
pseudostate and mixed basis expansions are shown to be related to the weighted projection
approach. The break-up (and ionization) channels can be included in the coupled-channel
approach. Finally, the recently developed generalization of the Hartree–Fock (GHF) theory
for scattering is shown to be a special case of the weighted projections, thus providing a partial
justification of the use of amputated wavefunctions for the continuum state projection.

1. Introduction

One of the most successful approaches to treating many-particle scattering systems has been
the coupled-channel method (CCM) (Breit 1946, Newton 1958, Burke and Smith 1962, Mott
and Massey 1965). This includes theR-matrix approach (Burke 1979) which has been
widely employed. It has been widely used in low-energy scattering problems in atomic,
molecular and nuclear physics (Austern 1970), as well as in solid state and quantum optics
calculations. Although the resulting scattering amplitudes are some of the most accurate
ever produced by theory, there are many intrinsic as well as practical limitations to the
theory. Some of these will be analysed in this paper in order to formulate an alternate
mathematical procedure in terms of weighted projections. The new approach should be
applicable to a wide range of scattering systems, to atomic, molecular, nuclear as well as
to solid state and quantum optics problems. The important properties of the CCM are:

(i) The method usually works well for low-energy elastic and inelastic processes, with a
small number of open channels, but it cannot be directly applied to break-up and ionization
processes, where more than two clusters are present in the continua asymptotically. In the
past, this problem has always been treated by the distorted-wave formalism.

(ii) The internal cluster wavefunctions in the asymptotic region must be supplieda priori
in accurate forms. They are the integral part of the asymptotic boundary conditions needed
to specify the scattering problem. For clusters with three or more particles (as in He, Li, Na
atoms and ionic targets Mg+, O2+ ions, etc and He, C, O nuclei in nuclear reactions), this
requirement can be met only approximately. Effects of inaccuracies in the cluster functions
on the scattering solution are difficult to assess (Hahn 1968).
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(iii) The non-orthogonality problem associated with the rearrangement and exchange
channels can be a serious problem, and often the question of overcompleteness of mixed sets
arises (Percival and Seaton 1957). Due to the possible presence of disconnected scattering
kernels (Faddeev 1961, Weinberg 1963, 1964) there are convergence problems associated
with perturbation series. Its formal resolution is well documented (Newton 1982), but often
impractical to implement in real physical situations.

(iv) Furthermore, in the CCM, the many-particle scattering functions are expanded in
some basis sets associated with the cluster systems, and the series is truncated for practical
reasons. The convergence of the theory can thus be slow, as a function of the number of
basis functions included in the expansion of the total wavefunction. In many cases, this
depends on the basis functions chosen. The pseudostates and mixed basis sets are often
employed to improve the situation.

(v) Many resonance states can occur in a certain energy range, and they must be
incorporated explicitly in the basis set chosen. The problem simplifies, however, if a
coarse energy resolution is desired so that the spectra can be averaged over a finite energy
bin.

(vi) There are, in general, many inner-shell particles of the target core which are not
seriously involved in a given reaction at low energies, although they are carried by the theory
to satisfy the exclusion principle and screening. These spectator particles may sometimes
be replaced by a pseudopotential or a model potential.

Evidently, (i)–(iii) are the complications intrinsic to many-particle scattering systems,
while difficulties (iv)–(vi) are of a more practical nature and have been the subject of intense
developments in recent years. Some of this progress, relevant to our discussion, will be
summarized in section 2. Our main objective in this paper is to analyse items (i) and (iii);
(ii) has been treated recently (Hahn 1996) in terms of a generalized self-consistent field
(SCF) theory.

2. Coupled-channel equations for collisions

In order to describe the new approach based on the weighted projections, to be developed
in section 4, we first briefly summarize the conventional coupled-channel method (CCM)
for an N -particle scattering system. For simplicity, we limit the discussion here to
collision channels that involve only two clusters asymptotically,N = Na + Nb, for
example= 1+(N−1), and without particle rearrangements. The asymptotic channel cluster
functions for the(N − 1) particles are then required to characterize the open channels. The
operatorP = ∑3P

α=1 |ψα〉〈ψα| projects onto the open channels, in terms of the basis set
{ψα}. We haveP 2 = P+ = P . The rest of the closed-channel spectrum is grouped in
the operatorQ, such thatP + Q = 1, where 1 is in the space ofN − 1 particles. (This
particular separation of theN − 1 particle space in whichP spans only the open channels
is the minimal one and most convenient for the discussion below. In general,P may in
addition contain some of the closed-channel components. However, such a distinction may
not be possible in practice, especially when mixed nonorthogonal functions are used.)

2.1. General coupled scattering equations

A set of coupled equations for scattering is obtained using the expansion of the total
wavefunction9 = P9 +Q9, as

(H − E)P9 = −(H − E)Q9 . (2.1)
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In order to reduce the number of variables (3N for anN -particle system) in (2.1) to that
of one particle with three variables, equation (2.1) is usually projected onto the space of
(N − 1) particles. The conventional procedure is to use the same set that is used in the
definition ofP andQ, and project (2.1) from the left, as

P(H − E)P9 = −P(H − E)Q9 (2.2a)

Q(H − E)Q9 = −Q(H − E)P9 . (2.2b)

We have the desired equations of the CCM in its primitive form by truncation of theP and
Q spaces with a finite number of states.

In terms of the Green’s function in theQ space, we can uncouple (2.2), as

P [F + FGQF ]P9 = 0 (2.3)

whereF ≡ H − E, and

GQ = [Q(−F)Q]−1 . (2.4)

The Green’s functionGQ contains most of the important dynamical information on the
scattering system, such as the resonance structure, polarization of the targets and distortion
of the scattering states. The resulting effective ‘potential’ operator

PUQP = PFGQFP (2.5)

is nonlocal and energy dependent, and in general is in matrix form, as dictated by the
number of open channels spanned byP and the particular spin structure. Here, theQ space
was chosen to be entirely of the closed channel space at a given total energyE, in which
case this potentialPUQP is real and negative (i.e. attractive).

The P equation (2.2a) usually involves a small number of coupled equations for the
open channels at a given energyE, which can be readily integrated numerically, once some
form of theGQ operator is known. Elaborate numerical codes, including the well known R-
MATRIX code, are available for this purpose. Therefore, the main complication in treating
the many-particle scattering problem is in estimating theQ part of the wavefunction. In
this section we consider several approaches that can be used for this purpose.

We simply mention three approximations for the potentialUQ that have been frequently
used in the past. (i) In the case of low-energy atomic collisions, a long-range dipole (and
higher-order multipole) approximation may be introduced forP(H−E)Q, which then gives
rise to a polarization potential and distortion of targets. (ii) A variational approximation
for GQ may be given in terms of a set ofQ-space trial functions, and the resulting energy
matrix for the operatorQ(H − E)Q diagonalized and inverted. This also gives rise to
resonances. The variationally determinedQ-space functions are the usual pseudostates,
and the convergence of the expansion in terms of the set{ψα} may be improved. (iii)
An adiabatic approximation for low-energy collisions is obtained by replacingGQ by
its adiabatic counterpart. This turned out to be the adiabatic state expansion, as will be
discussed further in the next section.

2.2. Effective orthogonality of the projected states

In general, for identical multiparticle systems with exchange symmetries, the explicit
operatorsP andQ are difficult to construct, even when the precise form of theψ are
available. However, in carrying out the actual scattering calculation, this requirement can
be relaxed (Burke and Taylor 1966, Hahn 1970), and the orthogonality of theGQ andP
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need not be imposed. This is an important point of principle in the application of the CCM,
and its proof is given below. By defining the solutionP9 as

P9 = P9P +GPFQ9 (2.6)

where

P(H − E)P9P = 0 and P(E −H)PGP = P (2.7)

we can write theQ equation as

Q[F + FGPF ]Q9 = −QFP9P . (2.8)

Now, assume that an approximateQ′ contains a part which overlaps with theP space, i.e.
Q′ = aP + bQ. Then, from (2.8), we immediately have for theaP projected part

aP [F + FGPF ](aP + bQ)9 ′ = −aPFP9P . (2.9)

The left-hand side of (2.9) is zero by the definition ofGP , while the right-hand side also
vanishes because of the property ofP9P . Therefore, theaP component inQ′ is irrelevant
in so far as (2.9) is concerned. Note that the vanishing of both sides of (2.9) requires that
the exactGP andP9P are available. On the other hand, thebQ part gives

bQ[F + FGPF ](aP + bQ)9 ′ = −bQFP9P . (2.10)

Again theaP9 ′ part in (2.10) gives zero contribution, and thebQ part becomes

b2Q[F + FGPF ]Q9 ′ = −bQFP9P . (2.11)

Now, since theaP part is not present in both (2.9) and (2.10), we may simply setb = 1
and we are back toQ′ = Q; that is, equation (2.11) is identical to (2.7). This concludes
the proof that, within the structure of the coupled equations (2.2), the overlap ofQ′ with
P does not affect the final solution. The problem of overcompleteness with two or more
different basis sets can be resolved by the same procedure as described above.

2.3. Rearrangement and exchange processes

The CCM method may be extended to rearrangement collisions in a mathematically
consistent way by the reduced matrix equation (RME) formalism (Hahn 1982, Hahn and
Watson 1972). To make the discussion transparent, we consider a three-particle collision
system,N = 3, with rearrangement of particles (and exchange). Then

1+ (2+ 3)0→ 1+ (2+ 3)n (2.11a)

→ 2+ (1+ 3)m (2.11b)

→ 1+ 2+ 3 . (2.11c)

For this simple scattering system with the two-cluster elastic and inelastic excitation
channels, the cluster function for(2+ 3) and (1+ 3) can be calculated accurately. On
the other hand, forN > 3, we may have a bound cluster(2 + 3 + 4), for example,
and the asymptotic channel boundary conditions require that such cluster functions must be
supplied prior to the scattering calculation. Such functions are, in general, difficult to obtain,
however. The question of how critical is the effect of approximate cluster functions on the
resulting scattering amplitudes is not so simple to assess. A fully self-consistent procedure
was formulated recently, in which these cluster functions as well as the scattering functions
themselves are determined simultaneously. This approach is summarized in section 5.

We follow the RME formulation, which was developed previously to circumvent the
theoretical difficulties associated with the rearrangement channels. It combines the more
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rigorous Faddeev theory and more practical multiple scattering theory of Watson. For
simplicity, we neglect the break-up channel (2.11c) and omit the channel 3+ (1+2). Then
the reduced matrix equations (sometimes called FHW equations) for this system are given
by

M9 =
[
H1+ Y1− E V2− Y2

V1+ Y1 H2+ Y2− E
] (

91

92

)
= 0 (2.12)

which is a reduced form of the original matrix equation of Faddeev, in which channel 3 is
collapsed. The potentialsY are arbitrary and, in general, chosen to facilitate convergence
when the equations are projected; their insertion in (2.12) does not change the physics in its
exact form, but any approximations to (2.12) will introduce different changes in the solution
depending on the particular approximation.

The usual approach is to construct projection operators

P =
[
P1 0
0 P2

]
(2.13)

whereP1 andP2 are from two different sets, associated with two distinct asymptotic channel
HamiltoniansHi . The correspondingQ operator may be defined, but with the property that
PQ = QP = 0 andP 2 = P+ = P ; also P1Q2 6= 0 andP1P2 6= 0, etc. Thus, these
operators are not all necessarily orthogonal, except in their respective asymptotic channel
regions, where their overlaps vanish. We then have both theP andQ components in the
wavefunction9 ' 9t = P9t +Q9t , which are to be determined simultaneously.

3. Mixed bases expansions

Before we discuss the weighted projection method (WPM) in the next section, it is instructive
to consider the use of mixed basis sets in the construction of coupled equations. As will
become clear, this is a special case of the WPM. We note that the projection need not be
with the set{ψ}, an alternate set{ψ ′}, for example, may be used, whereP ′ +Q′ = 1 but
Q′P 6= 0.

3.1. Mixed basis sets

In view of the approximations discussed in section 2, and the effective orthogonality proof,
it is reasonable to generalize the wavefunction expansion for the total scattering function9

in terms of one or more basis sets.
(i) For example, we consider the mixing of two basis sets,{ψ} and{φ} and denote them

by P andQ′, respectively; in its truncated form we have

9t '
3P∑
α

ψαuα +
3Q′∑
β

φβwβ = P9t +Q′9t . (3.1)

This is similar to the pseudostate expansion employed in many of the recent CCM
calculations. In general, these two sets are not necessarily orthogonal to each other, although
they are each complete. Therefore, the problem of overcompleteness arises. However,
because of the effective orthogonality property discussed in section 2, it can be shown that,
when the set of coupled equations are solved exactly numerically, the functionsu andw
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are arranged in such a way that this over-counting problem disappears. Thus, we have, for
all α 6 3P andβ 6 3Q′ ,

(ψα|[H − E]|9t) = 0 (3.2a)

(φβ |[H − E]|9t) = 0 (3.2b)

resulting in the coupled set of equations foru andw.
(ii) Alternatively, we may expand9t , in one set and the scattering equation is projected

by another set, as

9t =
3P∑
α

ψαuα (3.3)

and the projection

(φβ |[H − E]|9t) = 0 β = 1, 2, . . . , 3Q = 3P (3.4)

whereφβ , need not be the same asψα. The set (3.4) with (3.3) is the structure we study
below in terms of a weighted projection. Note that (3.4) is a coupled set of3P equations,
rather than the set (3.2) of(3P +3Q) coupled equations (3Q can be larger than3P ).

3.2. Adiabatic basis

The second basis set{φ} in (3.4) is as yet unspecified; it could be the same set as the
first as in (3.3), or arbitrarily parametrized variational functions. Excited states generated
by a Hartree–Fock procedure for the HamiltonianQ′HQ′ may be acceptable, where the
closed-channel space is treated just like a ‘bound-state’ problem using the conventional HF
procedure. The basis set thus generated can then be used in the diagonalization process in
the evaluation ofGQ. Although this procedure is often numerically intensive, the set can
provide a good first-order contribution to particular resonance states, which is otherwise
difficult to guess.

We consider here the adiabatic wavefunctions for projection of (2.1). This is also closely
related to the WPM, as discussed in section 5. To clarify the physical contents of this basis,
we show that the adiabatic basis set may be expressed as linear combinations of the functions
of the undistorted set, so that the adiabatic states represent the full polarization effect in the
low-energy approximation. For this purpose, we write the scattering Hamiltonian explicitly
as

H = K( ER)+ h(Er)+ V (Er − ER) (3.5)

and the undistorted states are generated byhψn = Enψn. We further letP = |ψ0〉〈ψ0| and
Q = 1−P , where 1 is in the space spanned byh, i.e. 1= δ(Er−Er ′). TheQ space represents
all the states generated byh except then = 0 state. The adiabatic basis is generated by
(h+ V ), where ER is simply a parameter, as

(h(r)+ V (r, R))φm(Er, ER) = Eam(R)φm . (3.6)

(Note that these adiabatic states are slightly different from those used in the molecular
representation, in the treatment of the core motion.)

The content of these functions may be exhibited explicitly by projecting theφ equation
(3.6). For the ground state withm = 0, e.g.

P(h+ V − Ea0)Pφ0 = −PVQφ0 (3.7a)

Q(h+ V − Ea0)Qφ0 = −QVPφ0 . (3.7b)
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As in section 2, theQφ0 is eliminated by solving (3.7b) and substituting back into (3.7a).
We then obtain for (3.7a)

P [h+ V + VGaQ

0 V − Ea0]Pφ0 = 0 (3.8a)

where

G
aQ

0 = [Q(Ea0 − h− V )Q]−1
. (3.8b)

Therefore, we finally have

φ0(Er, ER) = Pφ0+Qφ0 (3.9)

with

Pφ0 = ψ0(Er)f a0 ( ER) and Qφ0(Er, ER) = GaQ

0 QVPψ0f
a
0 (3.10)

with the normalization

f a0 (
ER)2[1+ 〈ψ0|V (GaQ

0 )
2
V |ψ0〉] = 1 . (3.11)

The result for the adiabatic Green’s functionGaQ

0 may be compared with the exactGQ of
(2.4); we see that (i)Q(K −E+E0)Q is omitted and (ii)E0 is replaced byEa0, whereEa0
is defined in terms of the adiabatic potential byEa0 = E0+ Ua

0 (R). Explicitly,

Ua
o = 〈PVP + PVGaQ

0 VP 〉 . (3.12)

This is a nonlinear relationship forUa
0 , becauseGaQ

0 itself containsUa
0 . The pairs of

functionsφn andψn overlap, especially at largeR.
As will be seen in the next section, this pair of adiabatic functions may be a suitable

candidate as weighted projections for low-energy collision processes.

3.3. Effective channel approach

In connection with the choice of a set that represents theQ space effectively, we note that
the Q-space function may be approximated (Rule and Hahn 1975, 1976) by the closure
property, as

Q9 = GQ(H − E)P9 ' 1−1
t QV P9t ≡ Q9t . (3.13)

Except for a constant1, we have an approximate trial function which mixes different
components of theQ space via the coupling QVP. In actual applications of (3.13), however,
the theory is usually cast in a normalization-independent form, so that the constant parameter
1t does not appear explicitly. It can be viewed as an effective variation of this parameter
for an optimal choice, thus supporting the effectiveness of the form (3.13). The function
Q9t was used to represent theQ space in the effective-channel approach (ECA), and
was successful earlier in deriving the effective proton–nucleus scattering potential at high
energies. Unlike in some of the previous theoretical analyses, this function correctly
estimated (Rule and Hahn 1975) the second diffraction peak in the proton–He angular
distribution at high energy, in agreement with the refined experiments at Saclay and
Berkeley. As will be shown later, this form of theQ-space function has an analogous
interpretation in the generalized HF theory. Incidentally, if necessary, theQ9t , may be
further split into components that represent subspaces ofQ.
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4. Weighted projection method

As stressed in section 2, equation (2.1) must be projected onto the(N −1)-particle space in
order to reduce the number of variables involved. In all the previous applications, however,
the projection of the scattering equations was carried out invariably with the basis functions
which were used in the expansion of9t . One major advantage of this approach is that the
resulting set of coupled equations is symmetric and is derivable from a variational principle.
Thus, for the number of basis functions included in the expansion of the scattering function
9t,3t = 3P +3Q, we have the same number of coupled equations to be integrated. The
partial diagonalization of theQ-space functions as in the pseudostate approach is consistent
with this picture, where the coefficient functions in the diagonalization are now specified
and the number of coupled equations to be solved explicitly remains at3P .

However, in principle we have the option of projecting with any functions so long as the
resulting scattering coefficient functions, theu andw in (3.1) for example, can be properly
determined. This possible option has never been explored, and it is the main purpose
of this paper to examine it within the context of the CCM. We formulate the weighted
projection method (WPM) to optimize the CCM. Since this is a totally new approach
for composite system scattering, there are many serious questions which must be clarified
before the method can be applied with confidence. In the following we discuss some of
these problems and attempt to provide some answers.

4.1. Weighted projection method

It is proposed that the projection of equation (2.1) be carried out with one or more weight
functionsW , such that the terms that couple the functions inP andQ disappear. That is,

PWPP (H − E)P9 = −PWPP (H − E)Q9 ' 0 (4.1a)

QWQQ(H − E)Q9 = −QWQQ(H − E)P9 ' 0 . (4.1b)

Obviously, theWP must contain the dynamical information carried byQ9, and vice versa
for WQ. In fact, the exactWP can be given formally such that the right-hand side of (4.1a)
is zero. From equation (2.3), we have the exactWP andWQ,

PWP = P [1+ (H − E)GQ] = P + P(H − E)GQQ (4.2a)

QWQ = Q[1+ (H − E)GP ] . (4.2b)

Note thatWP is by definition left-projected byP , but the right-hand side mixes both theP
andQ components. Explicitly, taking the Hermitian conjugate, we have the exact expression

WPψ = ψ +GQQVPψ . (4.2c)

That is, with the exactPWP given by (4.2a), theQ9 component in the scattering equation
is not necessary, andP9 alone is sufficient to describe the channels contained inP .
Incidentally, we note that (4.2c) is similar to (3.10) of the adiabatic basis, suggesting that
for low-energy collisions a suitably constructed adiabatic function may provide the correct
projection, where the weighting function is automatically included.

Similarly, we can show that adding terms in the9t , as9t = P9 + 9 ′ where9 ′ is
necessarilyQ9 ′, is not going to change the solution. Explicitly, with the new term9 ′, we
have for the right-hand side of the PT equation,

〈PWP |H − E|Q9 ′〉 = 0

= 〈Pψ |[P + VGQQ](H − E)|Q9 ′〉
= 〈Pψ |H − E|Q9 ′〉 + 〈Pψ |(H − E)GQQ(H − E)|Q9 ′〉
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by the definition ofGQ. Of course, in practiceQ9 ′ will be some part of the exactQ9,
but in the limit of a fullQ-space function, we have the exact cancellation shown above, so
that the right-hand side of theP9 equation will approach zero in this limit. This property
may be used to check the convergence of the WPM, so that the WPM is not an arbitrary
procedure.

The form of the scattering equations with the weighted projection is somewhat similar to
the Sturmian function expansion, where the projection is carried out and the weight function
is identified with the potential that generates the basis set. However, the details and the
physical content are quite different, since hereW essentially mixes states that are in the
originalQ space.

4.2. An equivalence proof of WPM and EPM

We now show explicitly that the construction of an effective potential (EPM) of a composite
system scattering for the coupled-channel approach is equivalent to the use of an effective
weighting function (WPM) for the projection of a simple scattering equation. In a special
case with3P = 1 and3Q = 1, we have9t = ψu+ φw, which gives

〈ψ |F |ψ〉u = −〈ψ |F |φ〉w (4.3a)

〈φ|F |φ〉w = −〈φ|F |ψ〉u . (4.3b)

These equations can be reduced to the following two different arrangements of terms:

〈ψ |F + Uφ|ψ〉u = 0 with Uφ = −F |ψ〉〈φ|F |φ〉−1〈φ|F (4.4)

or

〈ψ |WφF |ψ〉u = 0 with Wφ = 1− F |φ〉〈φ|F |φ〉−1〈φ| . (4.5)

This is a trivial regrouping of terms, but shows clearly the equivalence between the
calculation of an effective (optical) potentialUφ , and the weighted projection withWφ .
They have essentially the same physical contents.

The seemingly arbitrary choice of the weight function in terms of the amputated
scattering function must be corrected when an additional configuration interaction (CI) is
introduced. That is, as more terms are added to9t , the theory should converge, independent
of theW used. The equivalence proof given above between the WPM and the EPM shows
that these two methods are complementary. In fact, a close relationship exists between
them, as

WPM←→ CI←→ EPM

such that an optimal CCM must involve exploitation of both these methods. In addition, the
WPM now allows the treatment of the break-up and ionization channels within the CCM.
As will be discussed in the next section, the generalization of the conventional HF approach
to scattering problems also require the WPM in an essential way.

4.3. Approximate construction ofWP

We list several ways by which approximateWP may be obtained in practice.
(i) Variational principle. From equation (4.2a), we have the Hermitian conjugate

WPψ = ψ +GQQVPψ . (4.6)

Therefore

PWPψ = ψ and QWPψ = GQQVPψ . (4.7)
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A variational estimate ofWP should be in theGQ, as

GQ→−|Q8t 〉〈Q8t |F |Q8t 〉−1〈8t | ≡ GQ
t . (4.8)

For more than oneQ8t , we have a matrix inversion of theQFQ matrix. With this
variational form, we then have

WP
t ψn = ψn +GQ

t QVPψn (4.9)

for each stateψn in theP space.
(ii) The adiabatic approximation. As shown in section 3, we have simply an approximate

projection

WPψn ' φn . (4.10)

This obviously corresponds to the use of a mixed basis expansion, in which the wavefunction
9 is expanded in one basis set, while the projection is carried out using another set. We
have no previous experience with such an approach, and many test calculations are needed
to assess the reliability of (4.10).

(iii) Closure approximation. We can modify (4.2a) slightly as

PWP = P [−(H − E)GP + (H − E)GQ] = P [1+ (H − E)GQ]

' PVP/1P + PVQ/1Q ' PV/1t (4.11)

where the1 are suitable parameters defined in a closure approximation. The1t is not
essential when used in (4.1a), for example, especially when the right-hand side goes to
zero. In this form, equation (4.11), the weight function is very much like theQ-space
function used in the ECA. Obviously, with such a weighted projection, the right-hand side
of theP equations may be completely eliminated, and we have essentially a simple set of
open-channel equations.

Thus, the purpose of employing the weighted projection method (WPM) is to eliminate
the effect of the right-hand sides in (4.1), so that the simple functionP9t , determined by
(4.1a), for example, should be sufficiently accurate.

(iv) An approximate procedure for the construction of the weight function for the GHF
will be considered in section 4.5.

4.4. Rearrangement and break-up channels

The RME given in section 2 may be extended to include the WPM. Let the trial solution be
simply9t = P9t , while the RME is to be projected from the left by the weighted operator

PWP =
[
PWP

1 0
0 PWP

2

]
. (4.12)

This gives the desired equations for the rearrangement collisions

PWPMP9t = 0 . (4.13)

The break-up reactions are described by theP which project onto the continuum.
Obviously such projection operators may not be simply defined since they are no longer
square-integrable. However,ψ1(23)WP

1 (23), for example, may still make the integral
involved in the projected RME completely well defined. It is then a question of choosing the
correct weighting operators to represent the interaction region. At present, the amputation
of the continuumψ may be the preferred projection, as discussed in the next subsection.
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4.5. Weighting function for the continuum normalization

In the GHF approach, the continuum functions are used in projecting the equations for the
bound-state orbitals. However, this introduces infinities because of the non-normalizability
of the continuum orbital. The usual energy normalization requires a weight function of the
form

W1(r) = sin(1r)/r (4.14)

which effectively cuts off the infinitely oscillating (positive) tail, where it is assumed that
1 � k. This is a spectral density function and essentially eliminates the short-range part
of the normalization integral, so that for practical cases where the scattering functions are
needed in the matrix element calculation, the above form has to be properly modified. A
possible form is

W ' θ̃ (r0− r)+W1θ̃(r − r0) (4.15)

wherer0 is the range of the interaction potentialUc associated with the continuum orbital.
This form may further be approximated as

W ' Uc(r)/Ūc (4.16)

where the constant̄Uc often acts as a variational parameter that optimizes the effect ofW .
The form (4.16) was used in the recent generalization of the HF approach to scattering,
where the amputated scattering function may be cast in the form of a weighted projection.

4.6. Positron–hydrogen scattering

As the first numerical test of the WPM, we applied the theory to positron–hydrogen scattering
below the pick-up threshold for positronium formation. It is probably the simplest scattering
system involving three particles, that is not exactly solvable. The problem has been studied

Figure 1. The positron–hydrogen scattering phase shift obtained with the simple choice (17) is
compared with that obtained by the static approximation, the all-s approximation, and the exact
(numerical) result. The WPM seems to improve with increasing energy.
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extensively by a variety of theoretical techniques, and is a fertile ground for testing theories.
For example, the usually powerful coupled-channel method was proven to have a notoriously
bad convergence problem, unless a good polarization term was added. With the simple
choice

W ' 〈ψ0|V |ψ0〉 = Vstatic and 9t = ψ0u0t (4.17)

however, we recover more than one half of the total correction to the static approximation.
This is illustrated in figure 1. Together with other approximations for theW discussed in
this section, this example shows that the WPM could be a powerful tool to improve the
coupled-channel method.

5. Discussions

We have reformulated the conventional CCM by introducing the weighted projection
procedure, for the purpose of optimizing the efficiency of the approach. The mixed
expansion of the wavefunctions naturally leads to the partially SCF HF theory and also
to the weighted projections. With a judicious choice of the weighting function, we can
greatly improve the effectiveness of the CCM, and several possibilities for the forms ofW

are discussed. More critical is the question of whether the WPM can be made convergent.
This is made plausible by the construction ofW in (4.2) as they are substituted into (4.1).
Finally, the fully SCF HF procedure for scattering, the generalized HF, is shown to be a
special case of the weighted projection approach. There are many serious questions on the
WPM and GHF which require further analyses and developments. Some of the outstanding
critical problems are: (i) the convergence of the theory as more terms are added to the9t ;
(ii) stability of the procedure with amputated wavefunctions; (iii) applicability of the theory
to systems with more than two particles in individual clusters.

There are many processes to which the new set of equations derived in sections 4 and 5
may be applied. In particular, the break-up channels may be incorporated in a very natural
way, since with the square-integrableW , all the components in the coupled scattering
equations are now well defined.

The theory developed above for the lowest HF ansatz may be extended to general
scattering systems. (i) More than one term may be added to9 which mixes the bound-
state configurations. This configuration mixing is expected to makeψ approach the
correct asymptotic functions. (ii) Multichannel scattering may be treated, including inelastic
and rearrangement collisions. (iii) Scattering systems with more than one particle in the
continuum may be treated, as in break-up and ionization reactions. The use of the weighted
projection may be especially relevant there. (iv) Reactions involving two heavy particles
may be analysed, where each particle may have internal cluster structures, as in heavy ion
reactions and molecular collisions. We have, for the first time, a self-consistent theory that
evaluates the resonance amplitudes corresponding to a two-particle one-hole state which are
coupled to the continuum.

It is also of interest to adopt the theory to treat bound-state problems in which highly
excited states with large spatial dimensions are involved. The conventional SCF procedure
treats such particles just as any other low-lying bound particles. The amputated function
provides a more compact description of such states.
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Appendix A. Partially SCF Hartree–Fock theory of collisions

An alternate treatment of the problem posed by (2.1) is to solve theQ-space problem
just like in the bound-state case, since theQ space is by definition closed, so that the
wavefunctions are all square-integrable, but with the coupling to theP space explicitly
included. The entireQ-space functions are written in HF antisymmetrized product forms
and all the orbitals are to be determined self-consistently. This requires all the orbitals
to be square-integrable. Similarly, theP equations are to be solved with the coupling to
theQ space retained. Obviously, this is not possible for theP space, becauseP9 is not
square integrable. We therefore depart from full self-consistency, and assume that all the
open-channel cluster functions{ψα} of theP space are available explicitly. Then, we have
the asymptotic boundary conditions satisfied explicitly. Since we do not require theψ to be
predetermined, so that they are not SCF, the principal difficulty of the full SCF formulation
of the entire scattering problem is avoided. For example, for a three-particle system with a
heavy central core, with 1+ (2+ 3+ C) collision, we may write

9t = ψ(23)u(1)+ φ(23)w(1) . (A.1)

For simplicity, we omitted the explicit reference to the core C, but we have to remember
that theψ(23), for example, is a genuine three-particle wavefunction, which is not readily
calculable. Then, the above procedure results in a set of coupled equations

〈ψ |H − E|ψ〉u = −〈ψ |H − E|φ〉w (A.2a)

〈φ|H − E|φ〉w = −〈φ|H − E|ψ〉u (A.2b)

〈w|H − E|w〉φ = −〈w|H − E|u〉ψ (A.2c)

for the functionsu, w andφ, all self-consistently, whileψ is assumed to be predetermined,
as a part of the asymptotic boundary conditions. That is, the Hamiltonianh(23C) for
the cluster gives the wavefunction ash(23C)ψ ' Etψ(23C), which has to be prepared
separately before (A.2) is set up. It is important to note the conspicuous absence of the
equation forψ in the set (A.2). That is,ψ is not determined self-consistently. This is
the continuum HF approach (CHF). The distinction between the GHF of section 5 and
the present CHF is clear; it is in the treatment ofψ . As noted earlier, if we are to also
determineψ within the framework of (A.2), we have to project with functionu, which is
not square-integrable, and we are therefore forced into introducing the amputation.

The main difference between the present approach and the conventional CCM is also
clear. That is, in the present CHF, theQ equations are solved self-consistently, as they are
coupled to theP -space functions, while theP equations are to be treated exactly as in the
conventional CCM.

Application of this procedure to simple three-particle scattering systems is in progress
to determine the efficiency of the approach. As compared to a fully self-consistent theory
summarized in section 4.5, the generalized HF, the present approach keeps the exact
asymptotic channel functions as givena priori.

The CHF of this appendix is presented so that it may be readily compared with the
GHF. Evidently, the assumption thatψ is given a priori makes the theory less drastically
different from the conventional approaches. No difficulties of continuum normalization arise.
However, from the general SCF point of view, this is not quite satisfactory, especially when
cluster functions such asψ are, in general, difficult to generate accurately. In the GHF, both
ψ andφ may be expressed as products (or determinants) of single-particle orbital functions,
and the whole set is to be determined self-consistently.
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Finally, we note that the〈ψ | and 〈φ| projections in (A.2) may be replaced by their
adiabatic counterpart, asψ → ψadiab andφ→ φadiab. This is consistent with the discussion
given in terms of (3.4), (3.10) and (4.2c).
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